Test 1 / Numerical Mathematics 1 / May 9th 2022, University of Groningen

Instructions

- You have 2 hours to complete the test. When applicable, people with special facilities have 2 h 20 minutes in total.
- The exam is "closed book", meaning that you can only make use of the material given to you.
- The grade will be computed as the number of obtained points, plus 1.
- All answers need to be justified using mathematical arguments.

Questions

Consider an arbitrary scalar function $g \in C^{5}([a, b])$. We define a numerical integration method over an interval $[a, b]$ by:

$$
\tilde{I}(g)=\frac{b-a}{2}[g(a)+g(b)]+\frac{(b-a)^{2}}{12}\left[g^{\prime}(a)-g^{\prime}(b)\right]
$$

(a) 1.5 Suppose that values of $g\left(x_{k}\right), g^{\prime}\left(x_{k}\right)$ are available at distinct nodes x_{0}, \ldots, x_{n}. Obtain a formula for a composite numerical integration on the nodes x_{0}, \ldots, x_{n}, with a uniform spacing $x_{j+1}-x_{j}=h$, based on $\tilde{I}(g)$.
At each subinterval $\left[x_{j}, x_{j+1}\right]$ the quadrature looks like: ($0.75 \mathbf{p t}$)

$$
\frac{h}{2}\left[g\left(x_{j}\right)+g\left(x_{j+1}\right)\right]+\frac{h^{2}}{12}\left[g^{\prime}\left(x_{j}\right)-g^{\prime}\left(x_{j+1}\right)\right]
$$

and adding up over all intervals (0.75 pt)

$$
\sum_{j=0}^{n-1} \frac{h}{2}\left[g\left(x_{j}\right)+g\left(x_{j+1}\right)\right]+\frac{h^{2}}{12}\left[g^{\prime}\left(x_{j}\right)-g^{\prime}\left(x_{j+1}\right)\right]
$$

(b) 4.5 Prove that $\tilde{I}(f)$ has degree of exactness 3 .

First, let us check that ALL cubic polynomials can be integrated exactly (0.75 $\mathbf{p t}$):
$q(x)=\alpha_{1}+\alpha_{2} x+\alpha_{3} x^{2}+\alpha_{4} x^{3} \rightarrow \int_{a}^{b} q(x) d x=\alpha_{1}(b-a)+\alpha_{2}\left(\frac{b^{2}}{2}-\frac{a^{2}}{2}\right)+\alpha_{3}\left(\frac{b^{3}}{3}-\frac{a^{3}}{3}\right)+\alpha_{4}\left(\frac{b^{4}}{4}-\frac{a^{4}}{4}\right)$
while (0.75 pt)

$$
\begin{aligned}
\tilde{I}(q)= & \frac{b-a}{2}\left[\alpha_{1}+\alpha_{2} a+\alpha_{3} a^{2}+\alpha_{4} a^{3}+\alpha_{1}+\alpha_{2} b+\alpha_{3} b^{2}+\alpha_{4} b^{3}\right] \\
& +\frac{(b-a)^{2}}{12}\left[\alpha_{2}+2 \alpha_{3} a+3 \alpha_{4} a^{2}-\alpha_{2}-2 \alpha_{3} b-3 \alpha_{4} b^{2}\right]
\end{aligned}
$$

and (0.75 pt)

$$
\begin{aligned}
\tilde{I}(q)= & (b-a) \alpha_{1}+\alpha_{2}\left(\frac{b^{2}}{2}-\frac{a^{2}}{2}\right)+\frac{b-a}{2} \alpha_{3}\left[a^{2}+b^{2}\right]+\frac{b-a}{2} \alpha_{4}\left[a^{3}+b^{3}\right] \\
& +\frac{(b-a)^{2}}{6} \alpha_{3}[a-b]+\frac{(b-a)^{2}}{4} \alpha_{4}\left[a^{2}-b^{2}\right]
\end{aligned}
$$

and working out the α_{3}-term (0.75 pt) and the α_{4}-term ($0.75 \mathbf{p t}$), and comparing with the exact integral, shows that cubic polynomials are integrated exactly. Finally, we have to show that one polynomial of order 4 is not integrated exactly, on a specific interval $[a, b]$. For instance, take x^{4} over $[0,1]$, and the result of the integral is one ($\left.0.25 \mathbf{~ p t}\right)$. The result of the numerical integration leads to: (0.5 pt)

$$
\frac{1}{2}\left[0^{4}+1^{4}\right]+\frac{(1)^{2}}{12}\left[4 \cdot 0^{3}-4 \cdot 1^{3}\right]=1 / 2-4 / 12=1 / 6
$$

finalizing the proof.
(c) 3 Suppose that values of $g\left(x_{k}\right), g^{\prime}\left(x_{k}\right)$ are given at distinct nodes x_{0}, \ldots, x_{n}. Write the system of equations for the coefficients of an approximating polynomial of degree $2 n+1$ such that the function values and its derivatives match with the ones of the original function at x_{0}, \ldots, x_{n}. Obtain explicitly the form of the approximating polynomial for $n=1$ assuming $x_{0}=0$ and $x_{1}=1$. What is the error between the original and approximating polynomial if the original one is of degree 1 ?

Define the approximating polynomial as $\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{2 n+1} x^{2 n+1}(\mathbf{0 . 2 5} \mathbf{~ p t})$. At each node x_{k} we can obtain a systems of equations:

$$
\begin{aligned}
g\left(x_{k}\right) & =\alpha_{0}+\alpha_{1} x_{k}+\cdots+\alpha_{2 n+1} x_{k}^{2 n+1}, k=0, \ldots, n \quad(0.25 \mathbf{p t}) \\
g^{\prime}\left(x_{k}\right) & =\alpha_{1}+\cdots+(2 n+1) \alpha_{2 n+1} x_{k}^{2 n}, k=0, \ldots, n \quad(\mathbf{0 . 2 5} \mathbf{p t})
\end{aligned}
$$

For $n=1$ with $x_{0}=0$ and $x_{1}=1$, we write explicitly the system of equations:

$$
\begin{aligned}
g(0) & =\alpha_{0} \quad(\mathbf{0 . 2 5} \mathbf{~ p t}) \\
g^{\prime}(0) & \left.=\alpha_{1} \quad \mathbf{(0 . 2 5} \mathbf{~ p t}\right) \\
g(1) & =\alpha_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3} \quad(\mathbf{0 . 2 5} \mathbf{~ p t}) \\
g^{\prime}(1) & =\alpha_{1}+2 \alpha_{2}+3 \alpha_{3} \quad(\mathbf{0 . 2 5} \mathbf{p t})
\end{aligned}
$$

where then we need to solve for the coefficients α_{2}, α_{3} :

$$
\begin{aligned}
& \alpha_{3}=g^{\prime}(1)+g^{\prime}(0)-2 g(1)+2 g(0) \quad(\mathbf{0 . 2 5} \mathbf{~ p t}) \\
& \alpha_{2}=-g^{\prime}(1)-2 g^{\prime}(0)+3 g(1)-3 g(0) \quad(\mathbf{0 . 2 5} \mathbf{~ p t})
\end{aligned}
$$

So, in the case that a linear polynomial is approximated, this means $g^{\prime}(1)=g^{\prime}(0)=g(1)-g(0)$ $(0.25 \mathrm{pt})$, and hence $\alpha_{2}=\alpha_{3}=0(0.25 \mathrm{pt})$. Therefore, the approximating polynomial is $f(0)+f^{\prime}(0) x$ leading to an exact approximation (zero error) (0.25 pt).

